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Abstract— Acute renal failure is a serious medical com-
plication that can occur following coronary artery bypass
grafting (CABG) surgery and can pose other serious medical
complications if left undiagnosed and untreated. Risk models
based on logistic regression were developed by the Society
of Thoracic Surgeons (STS) to provide information on the
potential mortality and morbidity outcomes of patients for
cardiac surgeries. Previous work strove to improve the STS risk
models with machine learning algorithms using pre-operative
data similar to that used to develop the STS risk models. In
this research, an intra-operative dataset with data obtained
during CABG surgery was analyzed that is separate from
that used to develop the STS risk models and previous work.
The focus of this research was to determine through intra-
operative data analysis whether surgical procedures and/or
patient condition changes during surgery are associated with
acute renal failure outcomes. Information from the analysis was
used to generate a binary classification model for the purpose
of assisting the pre-operative model in identifying patients’
risk of developing renal failure following CABG surgery. The
research identified 20 features of interest with significant (p-
value < 0.05) deviations between renal failure (RF) and non-
renal failure (NRF) patients during CABG surgery. The model
accurately identifies approximately 10 percent of RF patients
at a false positive rate (FPR) of 1 percent and approximately 22
percent at a higher FPR of 10 percent based on their surgical
parameter and patient condition measurements. The model has
the potential to be used as an overlay to the pre-operative model
and current practices to help identify patients with higher risk
of RF, thereby allowing clinicians to increase preventative care
measures for these patients.

[. INTRODUCTION

Coronary artery bypass grafting (CABG) is the most
common type of heart surgery in the U.S. [1]. Approximately
340,000 procedures are performed each year [2]. Serious
medical complications from CABG surgery can occur, in-
cluding stroke, heart attack, acute renal failure, and death.
This project focuses on acute renal failure, which is defined
as a significant post-operative increase in serum creatinine
or the post-operative requirement for dialysis [3, 4]. The
complication of acute renal failure was chosen to analyze for
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this project due to a request from cardiothoracic surgeons for
a predictive model that could provide additional insight for
improving surgical parameters during and following CABG
surgery for patients classified as likely to develop renal
failure. Acute renal failure reduces the kidneys’ ability to
filter waste products and balance fluid and electrolytes. It also
increases risks associated with other serious health compli-
cations, such as permanent kidney damage, if not diagnosed
and treated immediately [5]. Because of the importance
of renal function in maintaining homeostasis in the body,
acute renal failure is an independent risk factor for post-
operative mortality for patients requiring dialysis or other
renal replacement therapies [3, 4].

Risk models based on logistic regression were developed
by the Society of Thoracic Surgeons (STS) to provide infor-
mation on the potential mortality and morbidity outcomes of
cardiac surgery patients. The STS risk models provide a risk
assessment capability based on patients’ characteristics that
enables doctors to better judge patients’ fitness for specific
types of cardiac surgeries. Previous work [3, 6] strove to
improve predictions for 7 outcomes of the STS risk models,
including post-operative acute renal failure and mortality,
using pre-operative data similar to that used to develop the
STS risk models. This previous work used the machine
learning algorithm Extreme Gradient Boosting (XGBoost) to
develop models which showed improved classification results
for acute renal failure and modest improvement for mortality
compared with results based on the existing STS models [3,
6].

The focus of this research was to determine through intra-
operative data analysis whether surgical procedures and/or
patient condition changes during surgery are associated with
acute renal failure outcomes. Intra-operative data, which
consist of data collected during CABG surgeries separate
from the data used in developing the STS risk models and
previous work, are used in the analysis. The intra-operative
data employed in this project consist of patient demographics
as well as surgical medications and surgical parameters
recorded during CABG surgery for 362 patients.

This work is novel because it focused on identifying
intra-operative feature differences between the renal failure
(RF) and non-renal failure (NRF) patient classes for use
in generating a binary classification model to predict post-
operative acute renal failure outcomes. A binary classifi-
cation model using solely intra-operative features has the
potential to be used as an overlay to the pre-operative
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model and current practices to help identify potential RF
patients. The intra-operative data used in this project con-
tain time-series features (i.e., surgical/patient measurements),
many of which are different from those collected prior to
surgery. Information on the minute discrepancies in surgical
parameters and patient condition changes between RF and
NREF patients during surgery can be discerned through time-
series analysis. Time-series analysis results can influence
medication and procedures applied during and following
CABG surgery to mitigate the risk of RF. Patient condition
changes, especially those recorded just prior to, during and
directly after cardiopulmonary bypass time, are of special
interest for identifying the best surgical parameters.

The objectives of this research were to: 1) analyze intra-
operative data from patients undergoing CABG surgery; 2)
determine whether surgical procedures and patient condition
changes are associated with renal failure outcomes; and 3)
model determined features related to renal failure outcomes
in an explainable format for better prediction and prevention
of renal failure.

II. DATA

The data used in this research consist of 362 patients who
underwent isolated CABG surgery, meaning CABG is the
only performed procedure. There is 4:1 propensity matching
(4 NRF patients are present for every 1 RF patient) based on
pre-operative risk scores generated from the STS risk model.
Propensity matching is used to help remove potential bias
that could cause a classification model to overfit the data
and perform sub-optimally when applied to patients external
to the project data. 75 patients developed acute renal failure
following surgery and comprise the test group while the other
287 patients did not develop acute renal failure and comprise
the control group. It is important to note that surgery duration
varies for each patient and only half of the patients in the
data have surgery durations that exceed approximately 4.5
hours as shown in Figure 4. Furthermore, CABG surgical
procedures are not time-specific, but depend on the condi-
tion of the individual patient. The data subset used in the
analysis consists of patient condition measurements, surgical
parameters, and the top 5 medication features that affect
heart rate and blood pressure. Negative time values indicate
that the measurement was recorded prior to the first incision
which occurs at 0 minutes and is specified in Figures 3
and 4. Patient condition measurement and surgical parameter
data were forward filled for each patient by propagating the
last valid measurement forward to avoid data sparsity given
these features are continuous [7]. Medication features were
incorporated into the dataset for the specified infusion start
and stop times.

III. ANALYSIS METHODS

Patient condition, surgical parameter and medication mea-
surements were incorporated into a dataset as individual fea-
tures. An analysis of these features was conducted to discern
if feature values differed between RF and NRF patients.
Several methods were used for the analysis. Median value

time-series plots were generated for features that showed
distinct value separation for RF and NRF patients. P-values
were generated for each feature using the Kolmogorov-
Smirnov test on the distributions for RF and NRF patients.
This tests the null hypothesis that two independent samples
are drawn from the same continuous distribution. Features
with significant (p-value < 0.05) deviations between classes
indicate that only less than 5 percent of the time would the
same distribution generate the two class samples. P-values
less than 0.05 were used to help confirm features of interest
and are shown in Table 1. Time-series p-value plots were also
generated for each feature using the Kolmogorov-Smirnov
test for the two patient class distributions at each minute.
These provide more minute visualizations of significant
deviations between classes throughout surgery duration.

A separate analysis of medication features was conducted
using the Fisher Exact test to determine if there is 1) a
statistically significant association between patient class and
the presence of specific medication features; and/or 2) a
statistically significant association between patient class and
the 20 percent highest and lowest total medication amounts
administered. The p-values for these tests are shown in Table
II. Medication features were not used to train the model due
to their sparsity and poor effect on model performance.

6 classifiers were tested with various dataset adjustments.
The classifiers tested include Logistic Regression, Random
Forest, Extremely Randomized Trees (Extra Trees), Gaussian
Naive Bayes, K-Nearest Neighbors (KNN), and Quadratic
Discriminant Analysis (QDA). Logistic Regression has been
the model of choice for cardiac surgery risk modeling, such
as the STS models [7, 8]. Even with the high calibration seen
with the STS models using logistic regression [14], there
are downsides to logistic regression as it requires a linear
relationship between covariates and is prone to overfitting
for multicollinear and large datasets like the one used in
this research [9]. For these reasons, additional classifiers
were tested to determine the most optimal classifier for this
dataset. 10-fold cross-validation was applied to the data when
training and testing the model: the dataset was split into 10
groups, the model was trained on 9 groups, and then tested
on 1 group with this this process repeating a total of 10
times.

The performance of each classifier in predicting the RF
class was assessed based on the true positive rate (TPR)
percent values at false positive rates (FPR) of 0.01 and
0.10 percent as this indicates how well the model classifies
true positives (RF patients) while still having a low FPR
(i.e., the rate of classifying NRF patients as RF patients).
The TPR at a low FPR can be seen clearly on an ROC
Curve with the x-axis set to the log;, scale as shown in
Figure 2 for the classifier with the best performance. The
true negative rate (TNR) percent value at a false negative
rate (FNR) of 0.01 percent was also taken into consideration
as to how well the model classifies true negatives (NRF
patients) while still having a low FNR (i.e., the rate of
classifying RF patients as NRF patients). While the the main
objective was to classify RF patients, a second application
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of the model for helping to clear patients from consideration
of developing RF would also be useful for this objective.
Various dataset adjustments were tested with these classifiers.
The main dataset adjustments that were used to determine the
best model are:

1) Computing a rolling standard deviation for each of the
original numeric attributes to generate new features for model
training, referred to as featurization. This serves to generate
features that indicate patient condition measurements that
deviate from the mean feature values. This technique is used
as classifiers may discern class differences better for certain
features in this format.

2) Using scikit-learn [10] Robust Scaler with pre-operative
data, or data collected in the 10-minute window prior to
each patient’s surgery start time. Robust Scaler removes the
median and scales the data to the quantile range making it
robust to outliers present in the dataset. The values from
the 10-minute windows serve as patient baseline values that
when applied to scale the dataset, result in features that
indicate patient conditions that deviate from baseline values
during surgery.

3) Applying the scikit-learn [10] Recursive Feature Elim-
ination (RFE) tool for specific classifiers and using only
the RFE-selected features when training and testing the
model. When applied to the training set of data, RFE
eliminates features that are least important to the model
and returns features with the highest importance for the
specified estimator (classifier). This tool can help improve
model performance by reducing noise in the dataset due to
sparse and/or irrelevant features.

Additional adjustments include training the model at cer-
tain time intervals that showed improved class separation.
Time intervals with improved class separation were deter-
mined through an analysis of the median predicted positive
probabilities of the patients: predicted positive probabilities
for RF patients close to 1 and a predicted positive probabili-
ties for NRF patients close to O is ideal. The median positive
probability plot which assessed all patients’ probabilities of
developing renal failure throughout the surgery duration for
the classifier with the best performance is shown in Figure
3.

IV. RESULTS

Features with significant (p-value < 0.05) deviations be-
tween classes, meaning that only less than 5 percent of
the time would the same distribution generate the two class
samples, are listed in Table I with their respective p-values
and difference between mean values. Classifiers trained and
tested on only features with p-values considered significant
showed poor classification performance and a low percentage
of correctly identified RF patients.

A specific analysis of medication features using p-values
generated from the Fisher Exact Test showed that the pres-
ence of medication features for either class is not statistically
significant, nor is the number of RF patients in the groups
of patients administered the 20 percent highest and lowest

total dosages/volumes. The medication features and their p-
values are shown in Table II. P-value 1 indicates statistical
significance between patient class and the presence of spe-
cific medication features. P-values 2 and 3 indicate statistical
significance between patient class and the 20 percent highest
and lowest total medication amounts administered, respect-
fully.

The classifier that showed the best model performance is
Extra Trees with additional standard deviation features for
each feature in the dataset, no scaling of the dataset with pre-
operative data and the dataset containing only RFE-selected
features. This model is shown in Figure 1. The top 30 RFE-
selected features and their feature importances as determined
by Extra Trees are shown in Figure 5. Extra Trees shows
the best model performance in terms of having the highest
TPR at an FPR of 0.01 percent out of all classifiers tested
for this combination of dataset adjustments. This classifier
accurately identifies approximately 10 percent of RF patients
at an FPR of 1 percent and approximately 22 percent at a
higher FPR of 10 percent as shown in the first plot in Figure
1, which is enlarged in Figure 2. In addition, it accurately
identifies approximately 10 percent of NRF patients at an
FNR of 1 percent as shown in the third plot of Figure 1.
The approximation in identification is due to the randomized
nature of Extra Trees in terms of selected features and cut-
point choice that is explained further in [11]. Class separation
based on the probability estimates for the positive (RF) class
as determined throughout surgery duration by the Extra Trees
classifier is shown in Figure 3. Distinct class separation,
especially in the 3-7 hour time interval, indicates that the
classifier can discern a distinction between patients, and
that other machine learning methods may improve model
performance.

Significant features were used to assess credibility of
the Extra Trees model in classifying patients based on its
ranked feature importances as shown in Figure 5. Of the
top 30 features with the largest importances out of all 54
RFE-selected features, 9 features with significant deviations
between classes were present.

V. DISCUSSION

The model has the potential to be used as an overlay to
the pre-operative model and current practices to help identify
patients with higher risk of RF, thereby allowing clinicians
to increase preventative care measures for these patients. In
addition, this classifier can help identify NRF patients, which
can allow clinicians to better allocate preventive measures to
patients who show higher risk of RF as well as those not
identified by the classifier. Moreover, the model performance
indicates that an entire intra-operative time series analysis
may not be the best approach, and that the surgery time-
series analysis should be partitioned into sections based
on surgical procedures. Because there is a large variation
in patient surgery durations as shown in Figure 4, there
could be distinct variations in patient conditions at their
respective stages. Including the entire intra-operative time
series in the analysis could be convoluting the data. So,

172



1] 1 17
08 ] 08 0.8 3
06 3 06 06
o g ] i ] x ]
£ S g
0.4 1 0.4 0.4
0.2 -: 024 02
0d 04 0]
-|vvvr|vv1r|vvvr||V|||| B LI e e e e e e e e e e B S S e S s e e S S B e e e e e e |
-4 -3 -2 -1 0 0 0.2 04 06 0.8 1 -4 -3 -2 -1 0
log10(FPR) FPR log10(FNR)
Fig. 1: ROC curves for all 6 classifiers. Shaded region is the standard error.
Feature P-Value Mean Difference 4
Stroke Volume 77.26 0.62 15
RV End Diastolic Volume -6.88 2.04 i
Pulse Pressure-Blood -5.49 2.14 e
Central Venous Pressure -4.54 0.76 0.8 J
NIRS Cerebral Oxygenation-L -3.96 2.37 -
Mean Blood Pressure -3.96 0.76 b
SvO2 -3.69 1.12 ]
Systolic Blood Pressure -3.69 1.45 06 -
Oxygen Percent (Fi02) -3.69 1.43 e ]
RV Ejection Fraction -3.42 0.50 & i
Arterial Diastolic Pressure -3.17 0.70 e
BIS Value 317 128 0.4
Heart Rate-Pleth -2.92 341 Al
Diastolic Blood Pressure -2.92 0.68 -
NIRS Cerebral Oxygenation-R || -2.46 1.90 02 N
Heart Rate -2.24 1.78 5 ol
Mean Arterial Pressure -2.24 0.55 1
Pulse Pressure-Arterial -2.03 1.10 ]
Pulmonary Artery Mean -1.83 0.23 0 -
Epinephrine 64 Dose -1.64 3.13 Tttt
TABLE I: log,,(p-values) and mean differences between RF 4 3 2 - 0
and NRF patients for significant features log10(FPR) ’

(a) Plot 1 of Figure 1 on a larger scale. Approximately 10

Feature P-value 1 || P-value 2 || P-value 3 | percent accurate identification of RF patients at a FPR of 0.01
Phenylephrine Volume 1.00 0.712 0.856 percent and 22 percent at an FPR of 0.10 percent for Extra
Phenyleprhine Dosage 1.00 0.461 0.856 Trees Classifier
Vasopressin Volume 0.007 0.545 0.360
Vasopressin Dosage 0.007 0.545 0.360 — Random
Epinephrine 10 mcg/mL Volume || 0.018 0.526 1.00 L
Epinephrine 10 mcg/mL Dosage || 0.018 0.526 1.00 — NaiveBayes
Epinephrine 64 mcg/mL Volume || 0.019 0.377 0.517 LogisticRegression-L1L2
Epinephrine 64 mcg/mL Dosage 0.027 0.828 1.00
Norepinephrine Volume 0.005 0.450 0.450 —— RandomForest
Norepinephrine Dose 0.005 0.205 0.405
Albumin 5 percent Volume 0.007 1.00 0.819 — ExtraTrees
TABLE II: P-values for medication features. None are con- KNN
QDA

sidered statistically significant after Bonferroni correction (p-

value = 0.0045).

while the model correctly identifies approximately 10 percent
of RF patients at a FPR of 1 percent and approximately
22 percent at a higher FPR of 10 percent, partitioning the
data based on procedures within the surgery could improve

(b) ROC curve legend

Fig. 2: Extra Trees classifier has the best ROC curve results
out of the 6 tested classifiers
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Fig. 3: Positive probability estimates for the optimal model
with Extra Trees classifier. 0 minutes indicates first incision
of surgery.
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Fig. 4: The number of patients present throughout surgery.
0 minutes indicates first incision of surgery.

model performance. Partitioning may also provide results
that clinicians can more easily use to discern what and when
surgical parameters should be adjusted.

The model performance could also indicate that fea-
tures currently collected during CABG surgery may not be
representative of renal function. Collecting and evaluating
features more directly correlated to renal function during
CABG surgery could improve the intra-operative analy-
sis and, ultimately, the model performance. For example,
serum creatinine level directly indicates glomerular filtration
rate, which directly correlates to renal function [9, 13,
15]. Glomerular filtration rate decreases as renal function
decreases, leading to an increased serum creatinine level,
which is a strong risk factor for RF [16]. Creatinine level is

ETC Feature Importances for Top 30 Selected Feature
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Fig. 5: Extra Trees RFE selected features ranked by impor-
tance determined by the classifier with respect to all features

measured pre-operatively and used in pre-operative models
to predict RF outcomes [3, 9, 12, 14, 15]; it is also measured
post-operatively to monitor RF, so its inclusion in time-
series intra-operative data could potentially improve model
performance.

VI. FUTURE WORK

Future work will involve partitioning the data for each
patient into 5 stages based on CABG surgical procedures.
Recorded features and their values will indicate the start and
end points of the 5 stages for each patient. An analysis of
patient condition, surgical parameter and medication features
will be performed for each stage to better assess patient
changes regarding specific events during CABG surgery.
Classifiers will be trained on each of the surgical stages to
refine the model and minimize possible data convolution. The
XGBoost algorithm will also be applied as it has improved
model performance as shown for work in [3, 6, 9].
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